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Abstract

Background and objectives: Malignant rhabdoid tumor
(MRT) is an aggressive malignancy driven by pathogenic
variants of SMARCB1/INI1 or, rarely, SMARCA4/BRG1. The
heterogeneity of MRT suggests that other genomic altera-
tions might contribute to tumor behavior. This study aimed
to evaluate somatic copy number alterations (SCNAs) and
mutation landscapes in MRT before and after treatment.
Methods: With IRB approval, five patients underwent
normal-tumor paired whole exome sequencing. Subse-
quently, the results were further analyzed using MuTect
v1.1 for variant DNA and cn.mops for SCNA. Results: Our
study revealed recurrent SCNAs harboring genes known
to be involved in tumorigenesis. These include 2q37.3
gain (4/5, 80%, programmed death 1, TWIST2), 7g932.1
gain (3/5, 60%), 11912.2 gain (3/5, 60%), 14g32.3 gain
(4/5, 80%), 19p13.2 loss (SMARCA4, 4/5, 80%), 21g22.3
gain (3/5, 60%), and 22q11.1 loss (2/5, 40%, involving
SMARCB1). Alterations more common in posttreatment
MRTs included 11p15.4 gain (3/3, 100%) and 11q12.2
gain (2/3, 67%). No actionable pathogenic variants were
observed. PD-1 immunohistochemistry correlated with
2q37.3 gain. Conclusion: Our study revealed recurrent
SCNAs in MRT. Genes within these regions are known to
be associated with the tumor immune response and me-
tastasis. This preliminary study demonstrated the poten-
tial value of SCNAs in furthering the understanding of this
highly malignant tumor.

Keywords: Malignant rhabdoid tumor; Somatic copy number alteration; Whole
exome sequencing; PD-1.

Abbreviations: ASCL1, achaete-scute family bHLH transcription factor 1; AT,
atypical teratoid; CRC, colorectal cancer; DAGLA, diacylglycerol lipase alpha;
DDX11, DEAD/H-box helicase 11; FFPE, formalin-fixed paraffin-embedded;
H&E, ematoxylin and eosin; IHC, immunohistochemical; LMO1, LIM domain
only 1 (rhombotin 1); MMP, matrix metalloproteinase; MRT, malignant rhab-
doid tumor; MTA1, metastasis-associated gene 1; MTA1, metastasis-associated
gene 1; PCR, polymerase chain reaction; PD-1, programmed death 1; PD-L1,
programmed cell death ligand 1; RCC, renal cell carcinoma; RT, rhabdoid tu-
mor; SCNA, somatic copy number alteration; SLC9A3R1, solute carrier family
9 (sodium/hydrogen exchanger), member 3 regulator 1; SMARCA4, SWI/SNF
related, matrix associated, actin dependent regulator of chromatin, subfamily
a, member 4; SMARCB1, SWI/SNF-related matrix-associated actin-dependent
regulator; SNV, single nucleotide variant; TRAF3, TNF receptor associated fac-
tor 3; TRIAP1, TP53 regulated inhibitor of apoptosis 1; TWIST2, twist family
BHLH transcription factor 2; UPD, uniparental disomy; WES, whole exome se-
quencing; XIAP, X-linked inhibitor of apoptosis.

“Correspondence to: Mai He, Department of Pathology and Immunology,
Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., St.
Louis, MO 63110-1010, USA. ORCID: https://orcid.org/0000-0002-4775-9757.
Tel: +1-314-273-1328, E-mail: Maihe@wustl.edu

Citation of this article: Ma Y, Kaushal M, Dehner LP, Pfeif-
er J, He M. Somatic Copy Number Alterations and Mutation
Landscape in Before and Post-treatment Malignant Rhabdoid
Tumor. J Clin Transl Pathol 2024;4(1):1-11. doi: 10.14218/
JCTP.2023.00028.

Introduction

Malignant rhabdoid tumor (MRT) and related INI1-deficient
neoplasms are present in the kidney and various extrarenal
sites, including the central nervous system (atypical teratoid/
rhabdoid tumor). These occurrences predominantly affect in-
fants and young children and are genetically characterized
by pathogenic variants of SMARCB1 (>95%), or rarely, of
SMARCA4 (<5%).17 These genes encode proteins that are
components of the chromatin remodeling complex SWI/SNF,
a highly conserved transcription regulator that recruits other
transcription factors for target genes or alters nucleosome
positions to modulate target gene expression.®® The multi-
modal approach to management yielded disappointing out-
comes.1011 The latter experience has motivated the pursuit
of studies to better understand this tumor and its microen-
vironment. Technical advances have provided methods for
dissecting the molecular and genomic landscape to gain in-
sight into the events of tumorigenesis, tumor progression,
and molecular alterations during treatment.

The molecular heterogeneity of MRT has been document-
ed over the past several years.2 Our hypothesis is that in ad-
dition to driver mutations, other genomic alterations in MRT
might also contribute to tumorigenesis, tumor progression,
and response or lack thereof to management and poor out-
come. This study utilized whole exome sequencing to ana-
lyze somatic copy number alterations (SCNAs) and somatic
variants in MRT patients. The results demonstrated genomic
alterations, in addition to driver mutations, providing an ad-
ditional layer of insight into one of the most aggressive neo-
plasms of childhood.

Material and methods

The sample selection and experimental studies were per-
formed as previously described.!3 All case and case identi-
fication numbers were the same as previously described.!3
Patient samples

This study was approved by the Washington University In-
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stitutional Review Board (IRB # 201102311 “Nextgen Se-
quencing Approaches” and 201705056 “Expression of Tumor
Immunotherapy Related Markers in Pediatric Malignancies”;
informed consent was waived). The present study was retro-
spective and included chart review and residual tissue study
following relevant guidelines and regulations. The terms
“malignant rhabdoid tumor” and “atypical teratoid/rhabdoid
tumor” were searched in the departmental archives of the
Lauren V. Ackerman Laboratory of Surgical Pathology, Barnes-
Jewish Hospital and St. Louis Children’s Hospital from 1990 to
2017. Hematoxylin and eosin (H&E) and related immunohis-
tochemical staining slides were reviewed, and patients with
sufficient tissue (formalin-fixed paraffin-embedded (FFPE)
tissue from biopsy/resection specimens) were included.

DNA extraction and whole-exome sequencing

Cases with sufficient amounts of both normal and tumor tis-
sue underwent whole exome sequencing (WES). Genomic
DNA was extracted from FFPE tissue from both the normal
and neoplastic tissues using standard methods as detailed
below.

DNA extraction

Genomic DNA of both normal and neoplastic tissue was ex-
tracted from the FFPE tissue at the Washington University
Genome Technology Access Center (GTAC), St. Louis, MO,
using the AllPrep DNA/RNA FFPE Kit (Qiagen, cat#80234).
The extracted DNA was qualified using a Tapestation 4200
(Agilent).

Whole-exome sequencing

Whole-exome sequencing was performed at the Washington
University GTAC facility as mentioned earlier. The genomic
DNA was sonicated to an average size of 175 bp; the DNA
fragments were ligated to the ends of Illumina sequencing
adapters. The ligated DNA fragments were amplified for 7
cycles. DNA fragments were then hybridized to biotinylated
RNA oligos specific to regions of interest (Clinical Research
Exome [Agilent] and selected from the remaining fragments
using streptavidin beads. The enriched library was amplified
for 14 cycles with primers incorporating a unique indexing
sequence tag. The resulting libraries were sequenced using
the Illumina HiSeq-3000 platform to obtain 150 bp paired-
end reads. Sequencing data revealed 25-30 M reads for nor-
mal tissue and 45-50 M reads for neoplastic tissue.

Somatic single nucleotide variant (SNV) determina-
tion

The raw sequencing data were processed, including variant
score recalibration following the Genome Analysis Toolkit
(GATK) v 3.3.0 best practices recommendations. Mutation
(variation) analysis and somatic mutation (variation) dis-
covery for SNVs were performed using MuTect v1.1.4. Indel
calling and somatic indel identification were performed us-
ing the GATK IndelGenotyper tool v2. The SNVs and indels
were subsequently annotated using ANNOVAR. The tumor
mutational burden was calculated as the total number of
missense somatic variants/54 mb, representing the size
of the Agilent clinical exome. The detected variants were
subsequently evaluated for clinical significance, including
pathogenicity, following published guidelines.4

SCNAs

The presence of SCFAs (short-chain fatty acids) was deter-
mined by comparing the number of aligned reads per gene
obtained by WES in tumors with that in normal tissues (con-

trols) via the cn.mops tool. Gain or loss was defined by abs_
CN, where 0 or 1 = deletion and 3 or more = amplification.

Immunohistochemistry (IHC)

Representative sections of tumor tissue from each case (one
section per case) were selected. IHC staining with appropri-
ate controls was performed on FFPE tissue samples for the
following IHC markers such as PD-1 (2.97 ug/mL, mouse
monoclonal, clone NAT105, Ventana, Tucson, AZ, USA), fol-
lowing standard protocols on a Ventana automated stainer
(Ventana Medical Systems, Tucson, AZ, USA) in the AMP
(Anatomic and Molecular Pathology) Core Lab, Department
of Pathology & Immunology, Washington University School
of Medicine. IHC staining was evaluated as follows: PD-1 ex-
pression was assessed semiquantitatively, and the number
of stained cells per high-power field (400x) was calculated
based on staining intensity (1+, 2++, and 3+++).

Results

Demographic data of the MRT patients

Five patients with adequate material were subjected to tu-
mor-normal paired whole-exome sequencing (Table 1). All
five patients had germline SMARCB1/INI1 gene mutations to
corroborate the pathological interpretation.'> Among these
patients, two had paired primary (pre-treatment, designat-
ed as C) and metastatic (post-treatment, designated as M)
tissue samples, two had primary tissue samples (only pre-
treatment tissue). Additionally, one had both pre-treatment
and post-treatment relapsed tissue samples (designated as
R). In total, there were three patients with post-treatment
samples.

SCNAs

SCNAs were analyzed in both the pre-treatment and post-
treatment groups. Twenty-one loci with SCNAs were iden-
tified at the whole-exome level in both groups, while the
post-treatment group had seven unique foci with SCNAs (Fig.
la and b, Table 2). Ten foci of SCNAs harbored malignancy-
related genes.

Several recurrent SCNAs were identified that harbored
gene alterations previously detected in malignancies. These
alterations included 2q37.3 gain (4/5, 80%, PD-1, TWIST2),
7932.1 gain (3/5, 60%), 11g12.2 gain (3/5, 60%), 14932.3
gain (4/5, 80%), 19p13.2 loss harboring SMARCA4 (4/5,
80%), 21g22.3 gain (3/5, 60%), and 22qg11.1 loss (2/5,
40%) involving SMARCB1. Alterations more frequently en-
countered in post-treatment MRTs were 11p15.4 gain (3/3,
100%) and 11g12.2 gain (2/3, 67%).

In the post-treatment group, seven unique foci of SC-
NAs were detected, including gain of copy number in four
genes known to be involved in tumorigenesis: chromosome
11p15.4 harbors LMO1 (LIM domain only 1) and MMP26
(matrix metallopeptidase 26); chromosome 12g24.31 has
TRIAP1 (TP53 Regulated Inhibitor of Apoptosis 1); chromo-
some 14q32.32, TRAF3 (TNF Receptor Associated Factor 3)
with amplification; and chromosome 17g25.1 has SLC9A3R1
(solute carrier family 9 (sodium/hydrogen exchanger), mem-
ber 3 regulator 1).

Somatic variation/mutation landscape

Somatic mutations (variations) are listed in Figure 2. These
mutations included nonsense mutations, frame shift inser-
tions, frame shift deletions, frame insertions, frame dele-
tions, splice site deletions, missense mutations, and 5’ flank-
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Table 1. Demographic data of the MRT patients

Case number ﬁﬁﬂ:"::rdng Tumor status 2?:92:; sis g:?- Location sae:i?tliigs SSMARCBI
Primary, pre-treatment

3 40310_C Primary, before treatment 9 weeks F Kidney Intronic

6 40311_C Primary, before treatment 9 months M Soft tissue p.R332W

5 40312 _C Primary, before treatment 6 months M Liver p.R40X, p.P221L
8 40307_C Primary, before treatment 10 months M Kidney Intronic

13 40309_C Primary, before treatment 19 months F Kidney pW197X
Post-treatment

6 40311_R Post-treatment residual tumor 11 months Soft tissue

5 40312_M Post-treatment metastatic tumor 9 months Lung

8 40307_M Post-treatment metastatic tumor 15 months Lung

MRT, malignant rhabdoid tumor.

ing regions. A search in ClinVar suggested that most of these
variations are more likely benign. Notably, DDX11 (DEAD/H-
box helicase 11) R186 W, was found in 2/5 cases (40%) and
could possibly be actionable (Table 3).14-17

IHC analysis of PD-1

Gain of chromosome 2g37.3 in both the pre- and post-treat-
ment groups suggested possible amplification of PD-1 and
TWIST2 (the twisted family BHLH transcription factor 2, Fig.
3a). To investigate whether PD-1 locus gain correlated with
protein expression, IHC was performed on PD-1 (Fig. 3b).
The PD-1 immunostaining score was higher in tumors with
2g37.3 gain (Fig. 3c). With an immune score of 100 as the
cutoff, a significant difference in the IHC score was observed
between those cases with 2q37.3 gain versus no gain (3/3 vs
0/4, P = 0.03; Fisher's exact test).

Discussion

This study is the first effort to investigate SCNAs and somatic
variations in primary, pre-treatment, and post-treatment
metastatic or recurrent MRTs by normal-tumor whole-exome
sequencing. Several recurrent SCNAs were identified and
were shared by more than one patient, some of which har-
bored genes with alterations known tumorigenic alterations.
These alterations included 2gq37.3 gain (4/5, 80%; PD-1,
TWIST2), 7932.1 gain (3/5, 60%), 11q12.2 gain (3/5, 60%),
14932.3 gain (4/5, 80%), 19p13.2 loss harboring SMARCA4
(4/5, 80%), 21g22.3 gain (3/5, 60%), and 22q11.1 loss
(2/5, 40%) involving SMARCB1. Alterations more common in
post-treatment MRTs included 11p15.4 gain (3/3, 100%) and
11q12.2 gain (2/3, 67%). The recurrent 2q37.3 gain involv-
ing the PD-1 gene correlated with PD-1 IHC.

Previous genomic studies of MRT/AT/RT and com-
parisons with our findings

To date, genetic and genomic studies have investigated
somatic variations, SCNAs, gene expression via path-
way analysis, microRNAs, and methylation. These stud-
ies have revealed the presence of driver mutation(s),
epigenetic dysregulations, and dysregulated pathways (Ta-
ble 4).3:1218-21 In our study, loss of 22g11.1 was identi-
fied in two patients (40309_C and 40310_C), while loss
of 22q11.23 was observed in two patients (40309_C and
40312_M) where SMARCB1 was located. These findings are
consistent with the findings of earlier studies.? SMARCA4

mutations are present in MRTs. The heterozygous nonsense
mutation ¢.3565C>T (p.Arg1189X) was found in SMAR-
CA4, suggesting that either a severely truncated transla-
tion product or nonsense-mediated decay of mRNA were
possible consequences.* SMARCA4 is located at 19p13.2
according to Ensembl. In our study, the 19p13.2 deletion
was found in two patients (40309_C, 40312_C), and the
19p13.2 gain was observed in three patients (40307_M,
40311_R, 40312_M).

SCNAs in MRT

In addition to the findings of prior studies, the present study
revealed several recurrent SCNAs that harbor genes with al-
terations involved in malignancy. These alterations included
2g37.3 gain (4/5, 80%; PD-1, TWIST2), 7q32.1 gain (3/5,
60%), 11g12.2 gain (3/5, 60%), 14q32.3 gain (4/5, 80%),
19p13.2 loss harboring SMARCA4 (4/5, 80%), 21g22.3
gain (3/5, 60%), and 22qg11.1 loss (2/5, 40%) involving
SMARCB1.

Alterations more frequently observed in posttreatment
MRTs included 11p15.4 gain (3/3, 100%) and 11g12.2 gain
(2/3, 67%). 11p15.4 was the only SCNA in two metastatic
patients (40307_M, 40312_M), suggesting that a gain of
11p15.4 might indicate the possibility of metastasis.

Potential pathogenic roles of gene amplification in
MRT

In our study, SCNAs were also found in regions where sev-
eral other important tumorigenesis-related genes are located
(Table 2). A gain in chromosome 2g37.3 was found in four
patients (40307_M, 40309_C, 40311_R, and 40312_C), in
which the PD-1 gene and TWIST2 (twist family BHLH tran-
scription factor 2) gene were located. In the CD8+ cytotoxic
antitumor response, receptor-ligand interactions between
molecules such as programmed cell death 1/programmed
cell death ligand 1 (PD-1/PD-L1) suppress the CD8+ cyto-
toxic response. The PD-1 gene encodes PD-1 (also known
as CD279), which is a negative stimulator of the immune
system with potent inhibitory effects on T and B lymphocytes
as well as the monocyte response.22-25 The expression levels
of these genes during persistent antigen exposure are ob-
served in chronic infections and cancer. IHC staining for PD-1
was performed, revealing a significantly higher PD-1 immu-
nostaining score in tumors from patients with 2q37.3 gain.
Overexpression of the TWIST1 and TWISTZ2 proteins has
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14q32.33 MTA1

15q15.1
15023

16022.1 Copy number alterations
17p13.1 Loss
19p13.2 SMARCA4 Gain
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219223
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Fig. 1. Somatic copy number alterations (SCNA) in malignant Rhabdoid tumor. (a) SCNA plot. (b) SCNAs seen in more than one sample, with corresponding
genes. The numbers in this figure represent various copy numbers. 2 is the normal copy number for diploid samples. 1 is a heterozygous deletion 0 is a homozygous
deletion. 3 through 8 are amplifications. LMO1, LIM domain only 1 (rhombotin 1); MMP, matrix metalloproteinase; MTA1, metastasis-associated gene 1; PD-1, pro-
grammed death 1; SLC9A3R1, solute carrier family 9 (sodium/hydrogen exchanger), member 3 regulator 1; SMARCA4, SWI/SNF related, matrix associated, actin
dependent regulator of chromatin, subfamily a, member 4; SMARCB1, SWI/SNF-related matrix-associated actin-dependent regulator; TRAF3, TNF receptor associated
factor 3; TRIAP1, TP53 regulated inhibitor of apoptosis 1; TWIST2, twist family BHLH transcription factor 2; XIAP, X-linked inhibitor of apoptosis.
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Fig. 2. Somatic mutation landscape in malignant rhabdoid tumors.

been reported in other soft tissue sarcomas, with TWIST2
amplification observed in rhabdomyosarcoma, contribut-
ing to the repression of myogenesis and promotion of on-
cogenesis.?® Chromosome rearrangement at 14q32.33
is noted in multiple myeloma with variable partner sites,
including 11q13.3, 8g24.1, 18921.3, and 6p21.1.27 In our
study, chromosome 14g32.33 was found in three patients
(40309_C, 40311_R, 40312_C), where MTA1 (metastasis-
associated gene 1) is located. MTA1 is related to invasion
and metastasis.?8-32 Chromosome Xq25 is lost in two pa-
tients (40309_C and 40312_C), in which the XIAP gene (X-
linked inhibitor of apoptosis) resides. The XIAPs regulate
cell death signaling pathways through binding and inhibiting
caspases and also participate in cancer initiation, promo-
tion, and progression.33-36

SCNA in post-treatment MRT
In our study, several SCNAs were identified in posttreatment

6 Journal of Clinical and Translational Pathology 2024 vol. 4(1) |
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tumors with chromosomal gains. Chromosome 11p15.4 was
found in three patients (40307_M, 40311_R, 40312_M), in
which LMO1 (LIM domain only 1 or rhombotin 1) and MMP26
(matrix metallopeptidase 26) were located. LMO1 functions
as a neuroblastoma oncogene and is implicated as an on-
cogene in colorectal and lung cancer.37:38 Proteins of the
matrix metalloproteinase (MMP) family are involved in the
breakdown of the extracellular matrix in normal physiologi-
cal processes, such as embryonic development, reproduc-
tion, and tissue remodeling. Additionally, they are involved
in disease processes such as arthritis and metastasis and
have been reported as biomarkers of various cancers.39-41
Chromosome 12g24.31 is gained in two patients (40307_M
and 40311_R), hosting the TP53-regulated inhibitor of apo-
ptosis 1 (TRIAP1) gene. TRIAP1 is a novel apoptosis inhibi-
tor that binds HSP70 in the cytoplasm and inhibits apopto-
some and caspase-9 activation. TRIAP1 has been shown to
be upregulated in various cancer types.4243 Chromosome
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Table 3. Somatic variants found in more than one malignant rhabdoid tumor sample

Muta- GnomAD .
g:;ee Samples tions (AA Actionable allele fre- E%':: ||:|°alse:1ISn neo-
change) quency
CLCNKA 40307, A287V Possibly Benign (1 Submission Allele Chloride  RNA expression
40310 (also in ClinVar though) https://www. Frequency voltage- ratios based on the
found in ncbi.nlm.nih.gov/clinvar/variat 0.005537 gated four-gene panel
40311_R ion/773389/?0q=CLCNKA[gen (exomes) channel can accurately
40307_M?) e]+AND+A287V[varname]+& https:// Ka classify subtypes
m=NM_004070.4(CLCNKA):c. gnomad. of RCC as well as
860C%3ET%20(p.Ala287Val) broadinstitute. help distinguish
org/variant/1- some oncocytomas
16354394-C- from chromophobe
T?dataset= RCC.1>
gnomad_r2_1
DDX11 40310, R186 W Possibly actionable as the Allele DEAD/H- DDX11 was
40311 mutation is located on a Frequency box significantly
functional Helicase ATP- 0.1208 helicase  upregulated and
binding domain. No variant (Exomes) 11 predicted poor
evidence in ClinVar though. prognosis in lung
adenocarcinoma. 6
FCGBP 40307, M1617V M1617V - Possibly benign as M1617V Fc Differentially
40312 (40307_T) GnomAD exomes allele frequency - 0.092 fragment expressed in paired
K3848E is high(0.092) and position is not  (Exomes); of IgG tumor-benign
(40307_M  conserved; K3848E - Possibly K3848E binding tissue samples
D3847E Benign as GhomAD exomes allele - 0.396 protein from patients with
(40307_M) frequency = 0.396 and position is (Exomes); stage II CRC.17
R300W not conserved; D3847E- Possibly D3847E -
(40312_T) benign as not inconserved region. Absent in
Variant not found in gnomAD exomes;
exomes; R300W - Uncertain R300W -
Significance - not conserved Absent in
but is absent in controls in exomes

GnomAD with good coverage

in region. Extremely rare?

CRC, colorectal cancer; RCC, renal cell carcinoma.

14932.32 was found in two patients (40307_M, 40311_R),
in which TNF receptor-associated factor 3 (TRAF3) was lo-
cated. TRAF3 is expressed in Hodgkin disease and lympho-
mas.4*4> Chromosome 17g25.1 was found in two patients
(40307_M, 40311_R), in which solute carrier family 9 (so-
dium/hydrogen exchanger) was located. There is growing
evidence that SLC9A3R1 plays an important role in cancer
progression.6:47

Overall, our study revealed that in addition to driver mu-
tations, there are recurrent SCNAs in different cases of MRT.
These alterations are associated with malignancy-related
genes, including SMARCB1, SMARCA4, PD-1, TWIST2, TRI-
AP1, MTA1, and XIAP. Notably, specific alterations, includ-
ing those in LMO1, MMP26, TRIAP1, TRAF3, and SLC9A3R1,
are specific for post-treatment MRTs. The identification of
11p15.4 as the only recurrent SCNA in two metastatic pa-
tients (40307_M, 40312_M) suggests its potential as an in-
dicator of metastasis. There are various treatments available
for patients with MRT, and our study may contribute to the
development of treatments based on SCNAs.*8 Importantly,
our study is the first to report specific SCNAs in post-treat-
ment MRTs.

Somatic mutation landscape

No obvious pathogenic variants were found in the current
study, with the exception of DDX11 (DEAD/H-box helicase
11) R186 W, which was found in two of five patients. DDX11
was found to be substantially upregulated in lung adenocar-
cinoma and to predict poor prognosis.*® This mutation may

Journal of Clinical and Translational Pathology 2024 vol. 4(1) |

be actionable because it is located within a functional heli-
case ATP-binding domain, while there is no variant evidence
in ClinVar.

Limitations

Due to the limited tissue available for clinical trials, a major
limitation is the small sample size. Two of the three post-
treatment samples were derived from metastatic sites;
there is a possibility that these differences were due to
changes in tumor metastasis rather than to clonal evolution
specifically from external therapeutic pressures. Moreover,
the possibility that posttreatment alterations may be arti-
factual due to poor sample quality or necrosis cannot be
ruled out.

Future directions

We previously reported the expression of PD-L1, PD-1 and
CD8 as well as the tumor mutational burden in patients
with malignant rhabdoid tumors.!3 Recently, Forrest’s study
demonstrated similar results for a significant proportion of
INI1-negative tumors expressing PD-L1.°0 These prior stud-
ies suggested future directions for further genomic and im-
munologic characterization of malignant rhabdoid tumors,
such as those harboring mutation-specific neoantigens and
in the tumor microenvironment. With more cases of MRT
studied, we hope to gain more understanding of the clinical
significance of these genomic alterations, especially those
with SCNAs.
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a Chromosomal Location | 40307_C | 40307_M | 40309 _C | 40310_C | 40311_C | 40311_R | 40321_C | 40312_M | Associated Genes
2437.3 PD-1 | TWIST2

b Primary, pre-treatment
H&E, 400x PD-1, 400x

40307 |

Post-treatment

H&E, 400x, PD-1, 400x

PD1IHC PD1/CD8 % PD1#/HPF PD1 intensity Score
8 40307_C <1 40 1 40
8 40307_M 50 60 3 180
13 40309 30 120 3 360
3 40310 <1 0 0
6 40311_C 20 0 0 0
6 40311_R 30 No more tumor tissue
5 40312_C 30 140 3 420
5) 40312_M 20 0 0 0

Fig. 3. PD-1 gain and PD-1 immunohistochemistry (IHC) in malignant rhabdoid tumors. (a) Somatic copy number alterations (SCNAs) at chromosomal region
2q37.3 where the PD-1 gene is located. (b) Representative images of H&E and PD-1 immunohistochemistry (all taken as 400x). (c) PD-1 IHC score summary. H&E,
ematoxylin and eosin; PD-1, programmed death 1; TWIST2, twist family BHLH transcription factor 2.

Conclusions

Our study demonstrated that in addition to the driver muta-
tions SMARCB1 and SMARCA4, MRT patients exhibit recur-
rent SCNAs. As demonstrated by PD-1 immunohistochem-
istry, the expression of genes within these chromosomal
loci correlates with tumor progression. Nevertheless, genes
within these regions may be worthy of further studies for
their role in tumorigenesis and tumor progression including
metastasis, their potential as treatment targets, and their
response to treatment.
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